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Abstract—We present a multi-agent system simula-
tion designed for efficient coordination and collab-
oration among multiple robots, particularly suited
for search operations. This simulation reflects un-
structured and complex outdoor scenarios where
significant obstruction and occluded terrain surfaces
cause difficulties in search. The software utilizes re-
inforcement learning (RL) and a centralized Multi-
Agent Transformer (MAT) to enable autonomous
agents to collect, process, and integrate data into
the MAT. Simulated robots can effectively search in
dynamic and unstructured environments. The project
code and videos can be found at https://github.com/
DIRECTLab/Coordinating-MAT-Env

Index Terms—Isaac Sim, Multi-Agent Simulation,
Reinforcement Learning, Unstructured Environment,
Simulation, Software

I. INTRODUCTION

Coordinating large-scale search and exploration
tasks in complex, dynamic environments presents
significant challenges, particularly when multiple
autonomous robots are involved. These environ-
ments, often characterized by unpredictable ter-
rain, obstacles, and occluded areas, require flexi-
ble, adaptable software systems that enable robots
to collaborate effectively in real-time. Traditional
methods for robotic coordination often lack the
ability to dynamically adapt to such evolving con-
ditions, limiting their effectiveness in outdoor, un-
structured environments.
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Fig. 1: Coordinated mission conducted by a fleet of
homogeneous robots in a forested area, The diagram
illustrates a hierarchical control architecture for
robotic movement. The High-Level Policy generates
strategic decisions that are refined by a pertained
foundation locomotion model(RL) Low-Level Pol-
icy to control the robot’s actions. The Vision Pol-
icy, using Convolutional Neural Networks (CNNs),
processes visual inputs to guide the Multi-Agent
Transformer (MAT), which integrates sensory data
for decision-making. This system dynamically in-
teracts with the all of the robot’s State, influencing
its actions and subsequent Rewards, optimizing
behavior through continuous feedback.

Traditional methods often lack the adaptability
required to handle such dynamic conditions. In
response to these challenges, we present a soft-
ware system specifically designed to coordinate
multi-robot search operations in complex envi-
ronments. The system integrates advanced tech-
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nologies, including the Multi-Agent Transformer
(MAT) architecture, for high-level coordination and
decision-making, alongside reinforcement learning
(RL)-based modules for low-level control and au-
tonomous behavior. By leveraging the NVIDIA
Isaac-Sim platform and extending its capabilities
through GRUtopia, our Multi-Agent Reinforcement
Learning (MARL) software enables high-fidelity
simulation and real-time decision-making in chal-
lenging scenarios.

This software framework allows for the integra-
tion of various robotic platforms, and supports a
wide range of tasks, from autonomous search to
environmental coverage. Its modular architecture
ensures scalability, enabling the deployment of large
fleets of robots while maintaining efficient coordi-
nation. The system’s flexibility makes it adaptable
to different algorithms, robotic platforms, and en-
vironmental setups, making it a valuable tool for
research and real-world applications.

In this paper, we focus on the design and im-
plementation of this software system, highlighting
its architecture, modularity, and the simulation en-
vironments it supports. We demonstrate how the
software can be applied to multi-robot coordination
tasks, with a particular emphasis on unstructured
search environments. The effectiveness of the sys-
tem is showcased through its ability to dynamically
manage complex robotic tasks and its potential for
future applications in autonomous systems.

Reinforcement Learning (RL) has been success-
fully applied to complex coordination problems,
including games with strategy-based tasks such as
DOTA [1] and Starcraft [2]. Inspired by this, we
built this software on NVIDIA’s Isaac-Sim [3], a
simulation platform that enables high-fidelity simu-
lation of complex robotic environments, the sim-
ulation is shown in Figure 1. By utilizing RL-
based models for locomotion and control [4]–[6],
our simulation environment supports biped legged
robots. These models ensure robust coordination
and flexibility in real-time operations, enabling the
robots to dynamically adapt to changing conditions.

II. METHODOLOGY

This work focuses on coverage applications using
a fleet of multiple robots, an operator will be able
to set bounds on an environment which they believe
the desired target to be located within, and the fleet
coordinates their strategy autonomously and begin
searching in a coordinated manner until the area has
been fully covered or a separate condition is met
(IE, searching a sufficient proportion of the area
within the bounds, or finding the desired object). A
high level illustration of this can be found at 1.

We developed a coverage algorithm within a
MARL framework, utilizing a centralized MAT
architecture. This algorithm was implemented in
the GRUtopia simulation environment to coordinate
multiple heterogeneous robotic agents in efficiently
covering a specified area. The primary objective was
to maximize environmental coverage by enabling
agents to explore as many unique grid cells as
possible within a fixed number of steps.

A. Environment Configuration

We utilized several tools for the research and
development of this system including NVIDIA’s
Isaac-Sim [3], a special built tool for developing
and simulating robot technologies developed under
the umbrella of the Omniverse project. Additionally,
we utilize an integration into Isaac-Sim primarily
developed by OpenRobotLab called GRUtopia [7],
which allows for interactive simulation of interac-
tive 3D environments.

To further enhance the realism and stress-test the
search algorithms, we incorporated NVIDIA’s Blast
Destruction to simulate debris fields that robots
must navigate through during missions, see Figure
2. This tool enables us to accurately model the
physics of rubble and structural collapses, providing
a more challenging and dynamic environment for
the agents. We also utilized NVIDIA Flow to sim-
ulate smoke during search operations, stressing the
robot’s sensors and decision-making processes in
low-visibility conditions. These additional simula-
tions act as digital twins for stress testing the search
methods, ensuring robustness in various disaster
scenarios.
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Fig. 2: Simulation environment demonstrating various capabilities: (A) NVIDIA’s Blast integration
allowing flexible use of robot platforms, including quadrupeds and drones; (B) volumetric lighting effects in
Isaac Sim, enhancing realistic robotic perception; (C) defined search area highlighting mission boundaries;
and (D) dense vegetation representing complex natural obstacles for testing navigation and obstacle
avoidance.

To facilitate coordination within the Isaac-Sim
environment, we utilized a modified instance of
the GRUtopia toolset. These modifications are cru-
cial for enabling the multi-agent communication
strategies discussed in the previous section. The
simulation environment is designed to mimic real-
world scenarios, with a generic forest scene that
reflects one of the many potential applications of
this technology. The Isaac-Sim environment allows
for large-scale training that would be impractical
in the real world, providing a robust and complex
simulation that closely emulates real-world condi-
tions. This enables the training data obtained from
Isaac-Sim and GRUtopia to be directly applicable
to real-world deployments of heterogeneous robotic
fleets.

A coverage grid (coverage_grid) is main-
tained to record the cells visited by the agents,
with the goal of collectively maximizing the num-
ber of unique cells explored. Agents are required
to remain within predefined boundaries; exceeding
these boundaries results in penalties to encourage

operation within the designated area.

B. Observation and Action Spaces

Each agent receives observations that include its
current position and orientation within the environ-
ment, represented as a vector, and simulated camera
data providing visual perception of the surround-
ings. The action space for each agent is continuous,
represented by a three-dimensional vector that dic-
tates movement in different directions, allowing for
fine-grained control over navigation.

C. Reward Function Design

The reward function is designed to incentivize
efficient coverage while penalizing undesirable be-
haviors. Agents receive a positive reward when they
visit a new, unvisited cell in the coverage grid, en-
couraging exploration. Penalties are imposed when
agents revisit cells, move out of bounds, or fail to
contribute to area coverage. A small negative reward
is assigned at each time step to encourage agents to
complete the coverage task promptly. Additionally,
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a completion bonus is granted if the agents achieve
full coverage before reaching the maximum number
of steps (Nmax), scaled inversely with the time taken
to further promote efficiency.

Mathematically, the immediate reward ri,j(t) for
agent j in environment i at time step t is defined
as:

ri,j(t) =


+1, if a new cell is visited
−∆ROI, if out of bounds
0, if revisiting a cell

(1)

Where ∆ROI represents the deviation from the
region of interest.

To encourage quicker completion of the coverage
task, a final reward is scaled inversely with the
time taken, providing an incentive for agents to
maximize efficiency. The time-based scaling factor,
denoted by α, measures the proportion of remaining
steps relative to the maximum number of allowed
steps: α = (Nmax −Ncurrent)Nmax, where Ncurrent is
the number of steps taken so far.

The total final reward Rfinal is calculated by
multiplying the achieved coverage proportion C,
the time bonus α, and a scaling factor k, which
is set to 10 in this context but can be adjusted
as a hyperparameter. Additionally, the variable ε
represents the time penalty per step, which is set to
−0.01. This final reward is added to the cumulative
reward:

rtotal =
∑
t

ri,j(t) + Cαkε (2)

This reward mechanism effectively encourages
agents not only to maximize the coverage area but
also to complete the task in fewer steps, promot-
ing efficient exploration and coordination among
agents. The format for equation 2 is inspired from
the work of [8].

D. Multi-Agent Transformer

The Multi-Agent Transformer (MAT) [9] is an
architecture that applies the principles of sequence
modeling, commonly used in natural language
processing, to multi-agent reinforcement learning
(MARL). MAT views the actions of agents as a

sequence of interrelated events, using an encoder-
decoder structure to process observations and gen-
erates actions for each agent. Through masked
attention, MAT ensures that agents only base their
decisions on previous actions in the sequence. This
allows the software to model agent interactions in
a highly coordinated and efficient manner. Trained
on-policy, MAT adapts dynamically to real-world
environments, making it ideal for tasks requiring
high levels of collaboration, such as multi-agent
robotics and search operations.

III. RESULTS

The core contribution of our system is its mod-
ular architecture, enabling integration of multiple
robotic platforms, control algorithms, and decision-
making models. It leverages a centralized Multi-
Agent Transformer (MAT) for high-level coordi-
nation, translating strategic instructions into low-
level commands specific to each robot. This flexible
architecture supports both centralized and decen-
tralized decision-making, balancing global coordi-
nation with individual agent autonomy. The system
can be extended to incorporate new robotic models,
control policies, or task-specific algorithms without
significant reconfiguration.

Our software includes several key components.
The MAT serves as a centralized entity that pro-
cesses high-level strategies and distributes contex-
tualized, low-level commands to individual agents,
improving coordination in dynamic environments
and ensuring that each robot’s actions are aligned
with the overall mission goals. Additionally, the
software incorporates robust multi-agent communi-
cation protocols that allow real-time data sharing
and decision synchronization across the robotic
fleet. This capability ensures smooth coordination
even in environments with dynamic obstacles and
occlusions.

The MAT processes high-level strategies and dis-
tributes context-specific commands, improving co-
ordination in dynamic environments. Robust multi-
agent communication protocols ensure real-time
data sharing and synchronization across the fleet,
enabling smooth coordination even in challenging
environments with dynamic obstacles. The simu-
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lation environment, built on NVIDIA’s Isaac-Sim
and extended via GRUtopia, offers high-fidelity em-
ulation of real-world conditions, modeling various
terrains, including forests, urban areas, and unstruc-
tured terrains with dynamic lighting and visibility
conditions. It supports complex environments, in-
cluding debris fields using NVIDIA BLAST, and
operates at 215 fps (on an RTX 4090) when opti-
mized. Scalability is a key strength, with support
for both small teams and large fleets using mesh
geometry instancing, making it suitable for testing
individual and group coordination strategies.

IV. CONCLUSION

Our software system represents a significant ad-
vancement in multi-agent robotic coordination, of-
fering a flexible, scalable, and high-fidelity platform
for both simulation and real-world applications. By
providing an adaptable and robust framework, the
system empowers researchers and developers to
tackle complex search and exploration tasks across
a wide range of robotic platforms and environments.

The software system offers a valuable platform
for benchmarking and improving multi-agent search
and coordination strategies. Its design supports flex-
ible experimentation in complex simulated envi-
ronments, providing a baseline for researchers and
developers to test their algorithms on key perfor-
mance metrics like coverage efficiency, scalability,
and real-time adaptability. By efficiently assigning
exploration tasks to individual robots, the system
minimizes redundancy, making it an ideal tool
for testing and refining RL approaches aimed at
optimizing search performance. Additionally, the
platform’s ability to simulate real-time adaptation
in dynamic scenarios, such as low-visibility envi-
ronments, allows users to evaluate how different
strategies maintain coordination and communica-
tion across a fleet. The system’s scalability, support-
ing both small teams and larger fleets of up to 20
agents, ensures that it can accommodate research
aimed at solving real-world challenges requiring
multi-agent coordination.

As part of our commitment to fostering collab-
oration and further research, the software system,
including the simulation environments and MAT

integration, has been open-sourced. This provides
researchers and developers access to a powerful
tool for testing multi-robot coordination strategies
in complex environments. The modular design of
the system enables users to tailor the platform to
their specific research requirements easily. Future
work aims to integrate this system with recent
advancements from Isaac-Lab [10], enhancing high-
level coordination capabilities and providing robust
solutions for multi-agent coordination in complex
and challenging environments.
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